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We formulate analytically the reflection of a one-dimensional, expanding free wave packet (wp) from an
infinite barrier. Three types of wp’s are considered, representing an electron, a molecule, and a classical
object. We derive a threshold criterion for the values of the dynamic parameters so that reciprocal (Kramers-
Kronig) relations holdin the time domainbetween the log-modulus of the wp and the (analytic part of its)
phase acquired during the reflection. For an electron, in a typical case, the relations are shown to be satisfied.
For a molecule the modulus-phase relations take a more complicated form, including the so-called Blaschke
term. For a classical particle characterized by a large mean momentum{K . p[trajectory length/(size of
wave packet)2] >>> p/size of wave packet}, the rate of acquisition of the relative phase between different
wp components is enormous (for a bullet it is typically 1014 GHz) with also a very large value for the phase
maximum.

1. Background and Introduction

Textbooks of quantum mechanics contain accounts of the
impingement of a freely moving one-dimensional particle on a
finite- or an infinite-height barrier (e.g., see ref 1). Some further
developments in ref 2 and more recently in ref 3 derived the
intensity or modulus of the particle beyond a barrier. In some
of these works, the particle is modeled by a incoming plane
wave with a given momentum. Other related works are ref 4
and, on the experimental side, ref 5. In so much as at some
later stage in this study we obtain the location of the zeros of
the reflected wave, we note the recent interest in the distributions
of zeros (nodes) of a (chaotic) wave6,7 in the coordinate space.

Using an elementary and exactly soluble model, we consider
here a localized wave packet (wp) representing, for instance, a
microscopic particle, such as an electron and a molecule,
reflected from an infinitely high barrier. One of our purposes
is to investigate the phase of the wp during its history and to
unravel a possible relation between the phase and the modulus
of the wp. Such relations were treated in our earlier articles,8-10

and this work can be considered an extension.
We further consider the wp of a classical particle and look

at its phase behavior. The interest in this lies in the widely held
belief that in any quantum mechanical measuring process the
phase interference between the measured quantum system and
its classical enclosure plays a crucial role (e.g., see ref 11). An
opposite view has been recently expressed in ref 12.

2. Description of the Model

The particle is represented as a one-dimensional expanding
wave packet (wp), starting at timet ) 0 as a Gaussian form
centered at a pointx ) a and having initially a width 2∆, that

is as

K is defined in terms of the mean particle momentump by K
) p/p and the crossed Planck constantp. The particle (whose
physical mass ismphysical) moves to the right, until it impinges
on an infinite barrier atx ) 0 (so thata is negative). It is then,
reflected from the barrier and moves left-wards, as depicted in
Figure 1. Following Tomonaga13 and other elementary texts,
we write the wave functionψ of a freely moving wp (without
a barrier) and satisfying a time dependent Schro¨dinger equation,
as

The symbolm is related to the physical mass bym ) mphysical/
p. In the second expression, the wave function appears as a
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product of the (real) modulus and a pure phase factor. The group
(or amplitude) velocity isKt/m, the same as the velocity of a
classical particle, but the phase velocity is seen to be more
complicated. It is noted for future reference that when the above
free wp is considered as a function of the complex time

it is a regular function in the lower half of the complext plane
(t′′ < 0) and tends to zero for large|t|. The former property is
shared by all physical wave packets in a time-independent
environment and is due to the lower boundedness of the energy
(or frequency) spectrum (which implies that wave functions of
a freely moving particles with negative energies are all zero).10,14

This property is analogous to the principle of causality, which
makes the response functions to be zero at negative times and,
by consequence, ensures the analyticity of response functions
in the upper half of the complex frequency plane.15

It will be noticed that the wp has a branch point and an
essential singularity in the upper half of thet plane.

In the presence of an infinite barrier, the wave function, to
be written asΨ(x, t), has to satisfy the condition

at all times and to vanish atx ) -∞ at finite times. A suitable
solution is thus

and

The real, positive quantityN in eq 6 is a normalizing factor,
given by

and is independent of time. This result follows from the
integration of the continuity (or mass-conservation) equation,

with account being taken of the vanishing of the integrand atx
) -∞ and atx ) 0.

3. Convergent Difference Function

The full wave functionΨ(x, t) shown in eq 6 can be expressed
as a product of the incoming wave function (ψ(x, t) shown in
eq 3) and the “difference function”ø′(x, t) defined as

From eq 3 this is

This function contains the effect of the reflection on both the
amplitude and the phase of the total wave function. We now
introduce a new functionø(x, t), given by

differing from the (former) difference functionø′(x, t) only by
the fraction shown. This function has the desired analytical
property of tending to 1 as|t| f ∞. By consequence lnø(x, t)
f 0 and we shall be able to use this function in an integration
of the logarithm overt with infinite limits in the formulas that
follow. ø(x, t) is thus termed the “convergent difference
function” and has (in certain physical situations, to be specified
later) the properties postulated in ref 8-10 for Hilbert trans-
forms.

3.0.1. Reciprocal Relations.The validity of the following
formulas requires lnø(x, t) to be analytic in the lower half of
the complext-plane and to tend to zero as|t| f ∞

Figure 1. Time-motion plot of the wave packet of a particle reflected by a boundary placed atx ) 0. The particle starts atx ) -5. (The units
employed vary with the nature of the particle: an electron, a molecule or a macroscopic projectile.)
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and

HereP signifies the principal part of the singular integral. (For
a derivation and extensions of these formulas when not all of
the conditions are met, see ref 16 or 9.)

3.1. Zeros of the Difference Function.Evidently,ø(x, t) has
no singularities in the lower half of the complext plane.
However, because our interest is in the logarithm, we need to
examine not only the singularities but also thezerosof ø(x, t).
These will come about when the exponent in eq 6 is zero or an
integer times 2π. Writing in the sequel-|x| for x and-|a| for
a (because both quantities are negative) and equating

(wheren is a positive or a negative integer or zero), we find
the location of thenth zero in the complext plane (t ) t′ +
it′′), at any fixed location- |x| on the left of the barrier as
follows:

The time when the center of the wave is reflected from the
barrier is denoted bytr and is

whereas the time (to be denoted bytd) when the wp broadens
because of its intrinsic dynamics in excess of its original width
is given by

We next define for any fixed pointx to the left of the barrier
the dimensionless quantitynr(x) given by

In terms of the quantities defined, the location of the zeros in
the t plane can be written as

Note that we shall always have zeros on the upper half of the
complext plane, becausen can be a negative integer, but zeros
on the lower half of the complex plane can exist only forn a
positive integer which satisfies

This implies that when

there are no zeros on the lower half of the complex plane
(because eq 21 cannot be satisfied for any positive integer).
Therefore, the reciprocal relations in eqs 12 and 13 can be

applied to obtain the additional reflection-induced phase through
the change in amplitude of the wave. Thus, under this condition
the reflection-induced phase is an observable quantity.

The above inequality amounts to the following:

The above two inequalities are among the central results of this
work and are termed “analyticity thresholds for a reflected
particle”. They can be achieved if the distance of observation
|x| from the position of the barrier is short or if the mean
momentump of the particle is small. The latter condition can
be achieved, as we shall see, for a particle with a microscopic
mass or for an extremely slowly moving projectile. The
momentum-position uncertainty relations are not violated by
eq 23, becausep is not the measured momentum of the particle,
only a parameter in the preparation of the projectile. Likewise,
x is a parameter of the measurement, whose outcome is a spread-
out function (the wp modulus).

In terms of the parameters introduced in this section, the
difference function can be written more simply as

4. Applications

We consider three cases for which the wave packet in eq 6
can serve as prescriptions.

4.1. An Electron. The wp of this can be characterized by
the following parameters (all in atomic units):m ) 1 ()me,
electronic mass),a ) -5, V (velocity) ) K/m ) 2, ∆ ) 2, x )
-1.5

wheren is zero or a positive or negative integer. It then follows
that t′′n < 0 for all n. Thus, all zeros of the difference function
ø(t) lie in the upper half of thet plane. By consequence, lnø(t)
is analytic in the lower half-plane and vanishes on a large
semicircle there. This ensures the validity of the reciprocal
relations shown in eqs 12 and 13.

We illustrate the use of the reciprocal relations in Figure 2.
The curve shown by full lines is obtained by calculating the
argument indirectly, from the modulus through eq 12. The
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Figure 2. “Analytical phase”. This is the part of the phase coming
from the analytic difference functionø(x, t) (here plotted for an electron
against timet in the vicinity of the reflection timetr and forx ) -1.5,
all in atomic units). The phase shown by full lines is calculated from
the log-modulus, using one of the two conjugate reciprocal relations.
The curve drawn by broken lines is calculated directly as the argument
of the complex function ofø(x, t). It shows jumps of(2π.

|x|p < πp (23)

ø′(t) ) 1 - exp[iπnr(x)
tr - itd

t - itd
] (24)

Then|x||K| ) 3, E ) 2, tr ) m|a|
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broken line curve, shown for comparison and displaced by a
tiny amount for clarity, is computed directly from the expression
in eq 11. It is clear that the two curves represent the same
quantity calculated in two different ways.

Apart from verifying the analytical properties ofø(x, t), the
agreement between the curves in Figure 2 provides a further
instance for the possibility, achievable under suitable circum-
stances, that for a wp the analytic part of the phase is precisely
given by the values of the wave function modulus for real values
of the time. (The “analytic” part is obtained from the total,
physical phase by subtracting from the latter those quantities
that do not vanish att ) (∞.) This part of the phase is
“observable”, indirectly, through the modulus.

The value ofx chosen for this case, namely, 0.08 nm, is near
the analyticity threshold value for the chosen mean particle
momentum.

4.2. A Molecule.As the next example (and still staying inside
the microscopic domain), we take an impacting water molecule
(molecular weight: 18) with the following kinetic parameters
expressed in atomic units:m) 3.6× 104, a ) -10,V (velocity)
) K/m ) 2.8 × 10-4, K ) 10, x ) -4. For the wave packet
width, we use a value taken from ref 18, namely,∆ ) 0.3 (also
in atomic units). This is of the order of the zero-point motion
amplitude of the nuclei. The coordinatex represents the position
of the center of mass of the molecule, with other internal degrees
of freedom considered fixed during the motion.

We further take|x||K| ) 40,E ) 1.4× 10-3, tr ) m|a|/K )
3.6 × 104, πnr(x) ) |x||K| ) 40, td ) 3.1 × 103

The zeros of the difference function are shown in Figure 3, for
values of n in the neighborhood of the sign change in the
imaginary partt′′n, namely nearn ) 13 ≈ 40/π.

The position threshold for analyticity in the case of a molecule
that has the quoted dynamic parameters is 0.02 nm, which is
hardly accessible to measurements. Thus, for a molecule, the
determination of the phase from modulus values requires the
consideration of the Blaschke term, as noted in ref 16.

4.3. A Classical Object.We express the parameters of the
wp, now inmgs units, as follows: m ) 1, V ) 100,mV ) pK
) 102, (p ≈ 10-31), K ) 1033, |x| ) 0.1,E ) 0.5× 102 and in

terms of an angular frequency, (in inverse second units)) E/p
) 0.5× 1033, tr ) 10-2, πnr(x) ) |x||K| ) 1032, td ) 2 × 109.

The choice of the initial wp width∆ requires some thought,
because it is not a usual quantity for a classical object. A lower
limit is clearly the zero-point motion amplitude for asingle
vibrational mode in the object. This is similar to that used for
a molecule, above, and amounts to∆ ) 10-11, in the now used
mgs units. It could be argued that the large number of vibrational
modes in the solid (of the order of 108 modes in the direction
of motion), would demand a larger number, e.g. through
multiplication of the previous conjecture by the square root of
the number of modes, leading to∆ ) 10-7. We shall see,
however, that this latter number does not change qualitatively
the essential conclusions reached in this section, namely, that
at about the instant of the reflection, the wp acquires a very
large phase shift, because of the difference function.

Thus, with the former, smaller choice for∆

Because of the very large numbers involved, the discussion that
follows will be in terms of orders of magnitudes.

4.3.1. Reflectional Phase Shift.We first rewrite the difference
function in eq 24 as

so that the time quotients in the exponents are small and whose
powers beyond the first can be ignored. We first compute the
phase change (arising from the difference function only)
acquired during the full motion. Initially att ) 0, we compute
(using the linear approximation in small quantities)

Thus, the phase is zero initially. Long after the reflection, but
before disintegration of the wp (td > t . tr)

The phase acquired is thus approximatelyπnr(x) ) |x|K ≈ 1032.
What is essential to note is that this phase scales with the
momentum of the classical particleK.

4.3.2. Phase at Reflection.Let us next consider the phase
change at about the reflection timetr (measured at a point
positioned at|x| ) 0.1 m before the barrier). To this end, we
expand the exponent fort ≈ tr and obtain

It is clear that the amplitude of the second (complex) term
changes aroundt ) tr from a very small number to a very large
one. The rate of change is easily calculated to be

Figure 3. Argand plot in the complext() t′ + it′′) plane for the
location of zeros in the difference function for a reflected water
molecule. The physical parameters are as given in the text for a
molecule. For these there are an infinite number of zeros in the upper
half and 12 zeros in the lower half of the complext plane. We show
about 30 zeros lying nearest to the real axis. The zeros are plotted in
units of the reflection timetr, defined in the text and (with the present
choice of parameters) having a value of 3.6× 104 in atomic units.

t′n ) 1.4× 106

πn
, t′′n ) 3.1× 103(1 - 40

πn) (26)

t′n ) 1030

πn
, t′′n ) 2 × 109(1 - 1032

πn ) (27)

ø′(t) ) 1 - e{iπnr(x)[1+(itr/td)]/[1+(it/td)]} (28)

ø′(0) ) 1 - e-iπnr(x)e-π[nr(x)tr/td] )

1 - e-iπnr(x) exp[- 1
2
1032-2-9] ≈ 1 (29)

ø′(0) ) 1 - eiπnr(x)eπ[nr(x)t/td] ≈ 1 - eiπnr(x) exp[1030] ≈
eiπnr(x) exp[1030] (30)

ø′(0) ) 1 - eiπnr(x)eπnr(x)[(t-tr)/td] ≈
1 - eiπnr(x) exp[121021(t - tr)] (31)

|x|Kp
1
2
m∆2

)
|x|V (the velocity)

1
2

∆2
) 2 × 1023 (radians per second)

(32)
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It should be noted that the astronomically large value of this
rate will still remain large (≈1015) when the initial value of the
wp width is increased 104-fold.

On the other hand, the rate of phase-change of a freely
evolving classical wave packet (in the absence of barrier) will
be larger (≈1044) by many orders of 10. This change remains
also for the reflected particle, having regard to the factorization
of Ψ as described at the beginning of section 3. The pigmied
reflection-induced phase may thus be thought to be devoid of
any physical significance. However, the former phase is thetotal
phase of the wp and is not in general observable, whereas the
reflection-induced phase is the relative phase between compo-
nents of the wp, which can be measured by interferometric
methods.

Although it may be said that the extremely large numbers
met with in this section for a macroscopic particle give the
results a surrealistic look, one notes that similar extremely high
rates (1019 s-1) are at the base of some proposals for wave
function collapse as being due to phase decoherence.18,19 We
further discuss this connection in the concluding section.

The analyticity threshold for the position of the observation
has, for a macroscopic projectile, an extremely low, subnucle-
onic value and is not realistic.

5. Conclusion

We have presented an analytic formulation for an elementary
one-dimensional scattering process of a microscopic wave
packet, perhaps the most elementary one for which an exact,
analytic solution is available. It has been shown that under
circumstances that are realizable for an electron, reciprocal
relations hold between the phase and the modulus of the
scattered particle’s wave function. This supplements our previ-
ous demonstrations of the existence of reciprocal relations for
localized, bound states.8-10 In those publications, we have noted
some other relations that connect the phase with modulus, in
particular, the equation of continuity. However, this equation
is a partial differential equation and does not uniquely recon-
struct the phase, even when the modulus is completely given.
Thus, even for a problem in only one spatial dimension, the
addition to the position derivative of the phase of a quantity
φ(t)/|ψ(x, t)|2, whereφ(t) is arbitrary, will satisfy the continuity
equation, whereas in higher dimensions, a much larger family
of functions will do so. In contrast, the reciprocal relations give
the analytic part uniquely from the modulus.

The physical basis for these relations was elucidated in refs
14 and 15, as being due to the lower boundedness of the
energies. When the analyticity requirements are not fully
satisfied, for example, through there being nodal points in the
wave function, the phase is still obtainable from the modulus,
the latter being given as function of thecomplextime. When
the analytic properties postulated in this article hold fully, it is
sufficient to know the modulus as function of real time, i.e.,
along the realt axis.

In this paper, we have obtained threshold relations which
delimit the straightforward application of the reciprocal relations.
It will be of interest to extend the theory to three-dimensional
scattering problems, to finite-height barriers, and to other cases.

For a (rigid) molecule impinging on an infinite barrier, we
have found that one should expect zeros of the “difference
function” in the lower half of the complex time plane, such

that additional (so-called, Blaschke) terms are required to
correlate the modulus with the phase changes.16

When the barrier is not infinite, the algebraic, image wave
function solution used in this work is not applicable. For that
situation, we have developed a method that employs a transfer
matrix for each momentum state, and we are in the process of
obtaining results from this method.

In a further application of the formalism, the reflection of a
classical particle from an infinite barrier is characterized by an
extremely rapid rate of growth of the wave function phase and
by its attaining a very high value. Having taken for the particle’s
mass 1 g and for its velocity 100 m/s, we obtain for the rate of
phase change at reflection, values of the order of 1023 radians
per second. The precise values, coming from the difference
function in eq 11, depend on the distance from the barrier and
from the starting point of the particle.

The acquisition by classical systems of very large phases
within a very short time period is likely to be quite general. It
is expected that it is rooted in the reciprocal relations between
the two quantities (moduli and phases) or, equivalently, in the
circumstance that they are parts of the same analytic function.
Thus, as thelogarithmof the modulus increases (numerically),
then so does the phase.

Although it is of a speculative nature, one would imagine a
similar phenomenon to occur during a wave function collapse.
It is widely held that the collapse is caused by a (phase-)
decoherence process, which takes place while the quantum
component is coupled to (entangled with) the classical compo-
nent (e.g., see ref 11). On the basis of our results that the sudden
switching from one (positive mean momentum) state to another
(negative mean momentum) state by a macroscopic object
causes the sudden acquisition of a large phase, we might expect
a similar phase increase to occur in the macroscopic part of the
combined quantum-classical system. A tiny variation in this
macro phase will suffice to cause decoherence in the total wave
function. However, a detailed description of this process requires
further work, probably through use of one the proposed models
for decoherence.11
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